Canonical form of linear subspaces and coding invariants: the poset metric point of view
نویسندگان
چکیده
In this work we introduce the concept of a sub-space decomposition, subject to a partition of the coordinates. Considering metrics determined by partial orders in the set of coordinates, the so called poset metrics, we show the existence of maximal decompositions according to the metric. These decompositions turns to be an important tool to obtain the canonical form for codes over any poset metrics and to obtain bounds for important invariants such as the packing radius of a linear subspace. Furthermore, using maximal decompositions, we are able to reduce and optimize the full lookup table algorithm for the syndrome decoding process.
منابع مشابه
Special connections in almost paracontact metric geometry
Two types of properties for linear connections (natural and almost paracontact metric) are discussed in almost paracontact metric geometry with respect to four linear connections: Levi-Civita, canonical (Zamkovoy), Golab and generalized dual. Their relationship is also analyzed with a special view towards their curvature. The particular case of an almost paracosymplectic manifold giv...
متن کاملFORMAL BALLS IN FUZZY PARTIAL METRIC SPACES
In this paper, the poset $BX$ of formal balls is studied in fuzzy partial metric space $(X,p,*)$. We introduce the notion of layered complete fuzzy partial metric space and get that the poset $BX$ of formal balls is a dcpo if and only if $(X,p,*)$ is layered complete fuzzy partial metric space.
متن کاملDetermining the order of minimal realization of descriptor systems without use of the Weierstrass canonical form
A common method to determine the order of minimal realization of a continuous linear time invariant descriptor system is to decompose it into slow and fast subsystems using the Weierstrass canonical form. The Weierstrass decomposition should be avoided because it is generally an ill-conditioned problem that requires many complex calculations especially for high-dimensional systems. The present ...
متن کاملCanonical Forms and Automorphisms in the Projective Space
Let C be a sequence of multisets of subspaces of a vector space Fq . We describe a practical algorithm which computes a canonical form and the stabilizer of C under the group action of the general semilinear group. It allows us to solve canonical form problems in coding theory, i.e. we are able to compute canonical forms of linear codes, Fq-linear block codes over the alphabet Fqs and random ne...
متن کاملSome Fixed Point Theorems in Generalized Metric Spaces Endowed with Vector-valued Metrics and Application in Linear and Nonlinear Matrix Equations
Let $mathcal{X}$ be a partially ordered set and $d$ be a generalized metric on $mathcal{X}$. We obtain some results in coupled and coupled coincidence of $g$-monotone functions on $mathcal{X}$, where $g$ is a function from $mathcal{X}$ into itself. Moreover, we show that a nonexpansive mapping on a partially ordered Hilbert space has a fixed point lying in the unit ball of the Hilbert space. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1706.09996 شماره
صفحات -
تاریخ انتشار 2017